Graph Isomorphism for K_{3, 3}-free and K_5-free graphs is in Log-space

نویسندگان

  • Samir Datta
  • Prajakta Nimbhorkar
  • Thomas Thierauf
  • Fabian Wagner
چکیده

Graph isomorphism is an important and widely studied computational problem with a yet unsettled complexity. However, the exact complexity is known for isomorphism of various classes of graphs. Recently, [8] proved that planar isomorphism is complete for log-space. We extend this result further to the classes of graphs which exclude K3,3 or K5 as a minor, and give a log-space algorithm. Our algorithm decomposes K3,3 minor-free graphs into biconnected and those further into triconnected components, which are known to be either planar or K5 components [20]. This gives a triconnected component tree similar to that for planar graphs. An extension of the log-space algorithm of [8] can then be used to decide the isomorphism problem. For K5 minor-free graphs, we consider 3-connected components. These are either planar or isomorphic to the four-rung mobius ladder on 8 vertices or, with a further decomposition, one obtains planar 4-connected components [9]. We give an algorithm to get a unique decomposition of K5 minor-free graphs into bi-, triand 4-connected components, and construct trees, accordingly. Since the algorithm of [8] does not deal with four-connected component trees, it needs to be modified in a quite non-trivial way.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ON THE GROUPS WITH THE PARTICULAR NON-COMMUTING GRAPHS

Let $G$ be a non-abelian finite group. In this paper, we prove that $Gamma(G)$ is $K_4$-free if and only if $G cong A times P$, where $A$ is an abelian group, $P$ is a $2$-group and $G/Z(G) cong mathbb{ Z}_2 times mathbb{Z}_2$. Also, we show that $Gamma(G)$ is $K_{1,3}$-free if and only if $G cong {mathbb{S}}_3,~D_8$ or $Q_8$.

متن کامل

Total domination in $K_r$-covered graphs

The inflation $G_{I}$ of a graph $G$ with $n(G)$ vertices and $m(G)$ edges is obtained from $G$ by replacing every vertex of degree $d$ of $G$ by a clique, which is isomorph to the complete graph $K_{d}$, and each edge $(x_{i},x_{j})$ of $G$ is replaced by an edge $(u,v)$ in such a way that $uin X_{i}$, $vin X_{j}$, and two different edges of $G$ are replaced by non-adjacent edges of $G_{I}$. T...

متن کامل

On the planarity of a graph related to the join of subgroups of a finite group

‎Let $G$ be a finite group which is not a cyclic $p$-group‎, ‎$p$ a prime number‎. ‎We define an undirected simple graph $Delta(G)$ whose‎ ‎vertices are the proper subgroups of $G$, which are not contained in the‎ ‎Frattini subgroup of $G$ and two vertices $H$ and $K$ are joined by an edge‎ ‎if and only if $G=langle H‎ , ‎Krangle$‎. ‎In this paper we classify finite groups with planar graph‎. ‎...

متن کامل

Reachability in K3, 3-Free Graphs and K5-Free Graphs Is in Unambiguous Log-Space

We show that the reachability problem for directed graphs that are either K3,3-free or K5-free is in unambiguous log-space, UL ∩ coUL. This significantly extends the result of Bourke, Tewari, and Vinodchandran that the reachability problem for directed planar graphs is in UL ∩ coUL. Our algorithm decomposes the graphs into biconnected and triconnected components. This gives a tree structure on ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009